Fuzzy Grey Prediction-Based Particle Filter for Object Tracking

نویسندگان

  • Lian Yang
  • Zhangping Lu
  • Saeid Abbasbandy
چکیده

A particle filter is a powerful tool for object tracking based on sequential Monte Carlo methods under a Bayesian estimation framework. A major challenge for a particle filter in object tracking is how to allocate particles to a high-probability density area. A particle filter does not take into account the historical prior information on the generation of the proposal distribution and, thus, it cannot approximate posterior density well. Therefore, a new fuzzy grey prediction-based particle filter (called FuzzyGP-PF) for object tracking is proposed in this paper. First, a new prediction model which was based on fuzzy mathematics theory and grey system theory was established, coined the Fuzzy-Grey-Prediction (FGP) model. Then, the history state sequence is utilized as prior information to predict and sample a part of particles for generating the proposal distribution in the particle filter. Simulations are conducted in the context of two typical maneuvering motion scenarios and the results indicate that the proposed FuzzyGP-PF algorithm can exhibit better overall performance in object tracking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

Grey Prediction Based Particle Filter for Maneuvering Target Tracking

For maneuvering target tracking, we propose a novel grey prediction based particle filter (GP-PF), which incorporates the grey prediction algorithm into the standard particle filter (SPF). The basic idea of the GP-PF is that new particles are sampled by both the state transition prior and the grey prediction algorithm. Since the grey prediction algorithm is a kind of model-free method and is ab...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an e...

متن کامل

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016